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Abstract Late-onset Alzheimer’s disease (LOAD) is

known to have a complex, oligogenic etiology, with con-

siderable genetic heterogeneity. We investigated the

influence of genetic interactions between genes in the

Alzheimer’s disease (AD) pathway on amyloid-beta (Ab)

deposition as measured by PiB or AV-45 ligand positron

emission tomography (PET) to aid in understanding

LOAD’s genetic etiology. Subsets of the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) cohorts were used

for discovery and for two independent validation analyses.

A significant interaction between RYR3 and CACNA1C was

confirmed in all three of the independent ADNI datasets.

Both genes encode calcium channels expressed in the

brain. The results shown here support previous animal

studies implicating interactions between these calcium

channels in amyloidogenesis and suggest that the patho-

logical cascade of this disease may be modified by inter-

actions in the amyloid–calcium axis. Future work focusing

on the mechanisms of such relationships may inform tar-

gets for clinical intervention.

Background

The complex genetic etiology of late-onset Alzheimer’s

disease (LOAD) has proven difficult to unravel, with the top

ten genes associated with LOAD explaining only 35 % of

the variability in disease risk (Naj et al. 2011). For complex

diseases like LOAD, it is imperative that we look beyond

single marker analyses to explore biologically plausible

interactions and that we address the considerable heteroge-

neity present in disease status information by using mean-

ingful intermediate phenotypes. In this study, we investigate

the influence of interactions between genes previously

associated with Alzheimer’s disease (AD) on amyloid-beta

(Ab) load in an effort to better understand the genetic eti-

ology of Ab deposition and, by extension, risk for LOAD.

Previous gene–gene interaction studies in LOAD have

implicated interactions between CR1 and APOE using

quantified Ab positron emission tomography (PET) as the

outcome variable (Thambisetty et al. 2012), and between

cholesterol trafficking genes (Rodrı́guez-Rodrı́guez et al.

2009, 2010) and tau phosphorylation genes (Mateo et al.

2009) in case–control analyses. These studies indicate the

important information that can be garnered from
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investigating higher-order genetic relationships in complex

diseases like LOAD. The current study aims to conduct a

more comprehensive analysis of gene–gene interactions

between variants associated with AD risk, while leveraging

quantitative measurements of AD-associated neuropathol-

ogy, which can increase statistical power (Potkin et al. 2009).

For brain-based diseases, quantitative data can be derived

from neuroimaging, such as PET. PET imaging can be used

to quantify levels of amyloid in the brain by utilizing a

radiotracer such as florbetapir (18F-AV-45 or AV-45) or and

Pittsburgh Compound-B (PiB, N-methyl-[11C]2-(40-meth-

ylaminophenyl)-6-hydroxybenzothiazole). These tracers

have been shown to selectively bind Ab in living patients,

have been correlated with disease onset and progression,

have been validated in postmortem samples, and more

recently were included as biomarkers for classifying patients

with AD in research studies (Ikonomovic et al. 2008; Clark

et al. 2011; Albert et al. 2011; Sperling et al. 2011).

Genetic interaction studies are prone to the problem of

overfitting, which can result in spurious associations that

are not replicated in independent datasets. This problem is

exaggerated when large-scale (e.g., genome-wide) explo-

rations are conducted, since the number of false-positive

findings is greatly increased. However, by focusing on

interactions between genes known to be involved in dis-

ease-related biological processes, one can maximize a

priori biological plausibility and post hoc interpretability

while reducing the multiple testing correction threshold

and computational burden (Pattin and Moore 2008). In this

study, we investigated genes from the AD pathway of the

Kyoto Encyclopedia of Genes and Genomes (KEGG)

database, which is a collection of manually curated path-

ways based on published literature for metabolism, genetic

and environmental information processing, and human

diseases, including AD (Kanehisa and Goto 2000; Kaneh-

isa et al. 2012). The AD KEGG pathway (hsa05010)

includes genes related to amyloid and tau processing,

apoptosis, mitochondrial dysfunction, free radical produc-

tion, and calcium homeostasis (http://www.genome.jp/

kegg/pathway/hsa/hsa05010.html).

Another challenge for genetic interaction analysis con-

cerns the biological ‘‘unit’’ or level at which one tries to

replicate or validate findings. Attempts to replicate at the

SNP level are rife with problems unrelated to verification

of a true biological effect (Neale and Sham 2004). SNP-

level replication is problematic largely due to the fact that

most genotyped SNPs are not functional and merely tag a

putative functional element. Differences in linkage dis-

equilibrium patterns across samples from a single popula-

tion can result in variable efficiency of tag SNPs and even

reverse directionality of effects, wherein a tag SNP is

linked to the risk allele in one sample but the reference or

protective allele in another sample (Neale and Sham 2004).

Likewise, allelic heterogeneity, in which multiple SNPs in

a gene have a similar effect, can result in reduced statistical

power and a failure to confirm an association with any

particular SNP, even when all are associated with the

disease of interest (Neale and Sham 2004). Indeed, since

SNPs generally exert their effects either by altering the

structure of a protein, the probability of transcription, or the

efficiency of translation, their biological relevance is

properly interpreted at the gene level (i.e., whether a pro-

tein is functional, whether it is present in deficient or

excessive levels, etc.). Thus, in this study, we use a gene-

based approach to validate significant interactions from the

discovery set in two additional independent datasets. A

similar replication approach was previously successful in

validating a novel gene–gene interaction underlying high-

density lipoprotein cholesterol (Ma et al. 2012, 2013).

Methods

Data used in the preparation of this article were obtained

from the ADNI database (adni.loni.ucla.edu). The ADNI

was launched in 2003 by the National Institute on Aging

(NIA), the National Institute of Biomedical Imaging and

Bioengineering (NIBIB), the Food and Drug Administra-

tion (FDA), private pharmaceutical companies, and non-

profit organizations, as a $60 million, 5-year public–private

partnership. The primary goal of ADNI has been to test

whether serial magnetic resonance imaging (MRI), PET,

other biological markers, and clinical and neuropsycho-

logical assessment can be combined to measure the pro-

gression of MCI and early AD. Determination of sensitive

and specific markers of very early AD progression is

intended to aid researchers and clinicians to develop new

treatments and monitor their effectiveness, as well as lessen

the time and cost of clinical trials.

The Principal Investigator of this initiative is Michael W.

Weiner, MD, VA Medical Center and University of Cali-

fornia-San Francisco. ADNI is the result of efforts of many

co-investigators from a broad range of academic institutions

and private corporations, and subjects have been recruited

from over 50 sites across the USA and Canada. The initial

goal of ADNI was to recruit 800 adults, ages 55–90 years,

to participate in the research, approximately 200 cogni-

tively normal older individuals to be followed for 3 years,

400 people with MCI to be followed for 3 years, and 200

people with early stage LOAD to be followed for 2 years.

For up-to-date information, see ww.adni-info.org.

Subjects

Participants were enrolled based on the criteria outlined in

the ADNI protocols (http://www.adni-info.org/Scientists/
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AboutADNI.aspx; http://adni.loni.ucla.edu/wp-content/

uploads/2008/07/ADNI2_Protocol_FINAL_20100917.pdf;

http://adni.loni.ucla.edu/wp-content/uploads/2008/07/ADNI_

Go_Protocol.pdf). Only subjects in the ADNI cohorts who

had both genotype data and either PiB or AV-45 PET scans

and were Caucasian (to minimize population stratification)

were included in analyses. Subjects from ADNI-1 with

AV-45 PET imaging data were included in the discovery

data set. The Stage 1 validation dataset included subjects

from ADNI-GO and ADNI-2 with AV-45 PET imaging

data, excluding all participants who were also present in

the discovery dataset. The Stage 2 validation dataset

included subjects from ADNI-1 with PiB PET imaging

data, while excluding subjects from either of the previous

two datasets. Demographic data are presented in Table 1.

Genotyping

Genotyping in the ADNI-1 discovery dataset was per-

formed using the Illumina Infinium Human-610-Quad

BeadChip. Quality control (QC) was performed using

PLINK software [version 1.07; (Purcell et al. 2007)],

excluding SNPs with a genotyping efficiency \95 %, out

of Hardy–Weinberg equilibrium (p \ 1 9 10-6), or with a

minor allele frequency (MAF) of \5 %. Subjects were

excluded if they had a genotyping call rate\95 %, if there

was a reported-versus-genetic sex inconsistency, or if

relatedness with another subject was established

(PI_HAT [ 0.5). After QC, 515,839 SNPs and 163 sub-

jects remained available for discovery analyses. For the

Stage 1 validation dataset, DNA samples from ADNI-GO

and ADNI-2 were genotyped on the Illumina HumanOm-

ni1-Quadv1 array. QC was performed in PLINK with the

same criteria as the discovery data set, resulting in 605,317

SNPs and 373 subjects available for validation analyses.

The same QC measures were applied to the Stage 2 vali-

dation dataset (leaving 95 subjects and 515,839 SNPs).

Effects of interactions on amyloid deposition

Quantification of amyloid deposition

Amyloid deposition was quantified using the AV-45 or PiB

tracers. Methods relating to PiB data acquisition and cal-

culation have been extensively described (Jagust et al.

2009, 2010), as have methods relating to AV-45 data

acquisition (Landau and Jagust 2012). In summary, for

both datasets, standardized uptake value ratio (SUVR)

images were normalized to the cerebellum (PiB) or cere-

bellar gray matter (AV-45) and co-registered to the subject-

specific T1-weighted structural MRI images. A composite

score was calculated as the mean normalized SUVR across

the anterior cingulate, frontal, lateral temporal, middle

temporal, parietal, precuneus, and occipital cortices (PiB)

Table 1 Sample characteristics

for discovery and validation

datasets

SD Standard deviation, SUVR

standardized uptake value ratio

normalized composite score for

amyloid tracer
a Normal control subjects had a

Mini-Mental Status

Examination (MMSE) score

between 24 and 30, a Clinical

Dementia Rating (CDR) score

of 0, and were not depressed

(Geriatric Depression Scale

score \ 6)
b Mild cognitive impairment

subjects had an MMSE score

between 24 and 30; objective

memory impairment, subjective

memory impairment, and a

CDR score of 0.5
c Alzheimer’s disease subjects

met clinical criteria for

dementia, had an MMSE of

between 20 and 26, and had

CDR score of 0.5 or 1

Clinical diagnosis

Normal controla Mild cognitive impairmentb Alzheimer’s diseasec

Discovery dataset

Number of patients 67 53 43

Number of APOE-4 carriers 14 17 28

Number of females 33 16 15

Mean baseline age (SD) 76.52 (5.171) 74.92 (7.372) 72.70 (6.383)

Mean years of education (SD*) 16.10 (3.036) 15.58 (3.207) 16.02 (2.866)

Mean AV-45 SUVR (SD) 1.22 (0.188) 1.35 (0.288) 1.47 (0.270)

Stage 1 validation dataset

Number of patients 110 223 40

Number of APOE-4 carriers 28 90 29

Number of females 56 94 15

Mean baseline age (SD) 74.03 (5.725) 72.10 (7.445) 73.10 (9.342)

Mean years of education (SD*) 16.42 (2.579) 16.12 (2.658) 15.53 (2.641)

Mean AV-45 SUVR (SD) 1.28 (0.237) 1.35 (0.251) 1.54 (0.225)

Stage 2 validation dataset

Number of patients 17 59 19

Number of APOE-4 carriers 4 34 11

Number of females 6 19 7

Mean baseline age (SD) 77.59 (5.161) 75.97 (8.049) 73.47 (8.746)

Mean years of education (SD) 15.65 (2.668) 16.14 (2.726) 15.00 (2.828)

Mean PiB SUVR (SD) 1.56 (0.355) 1.81 (0.368) 1.88 (0.305)
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and the cingulate (anterior and posterior), frontal, lateral

temporal, middle temporal, and lateral parietal (including

the precuneus and supramarginal gyrus) cortices (AV-45).

These regions were parcellated using FreeSurfer image

analysis suite (Fischl 2012). The composite score for each

subject was used as the outcome measure of amyloid

deposition in all three analyses.

SNP–SNP interaction analysis: discovery

Genotype data that passed QC were analyzed in an inter-

action analysis using the publicly available InterSNP pro-

gram (Herold et al. 2009). We tested the hypothesis that

gene–gene interactions explain variance in amyloid

pathology beyond variance related to age, sex, education,

disease status, and APOE genotype. Only SNPs that were in

a gene in the AD KEGG pathway were analyzed, and only

interactions between (not within) genes were tested. To

maximize post hoc biological interpretability, only SNPs

that were in a 50 untranslated region (UTR), 30 UTR, intron,

or exon of a gene (annotated using the product support files

available for download at Illumina.com) were included.

1196 SNPs that mapped to 43 genes were available in the

discovery dataset (Online resource 1). Across all possible

gene–gene pairs from the AD KEGG pathway, 634,864

SNP–SNP interactions were tested. All SNPs were modeled

as binary variables (minor allele absent or present) to

attenuate the problem of data sparsity commonly con-

fronted in interaction analyses. The outcome measure was

the composite mean normalized SUVR (as described

above). The covariates included were: baseline age in years,

last diagnosis recorded as of the January 2013 data release

(1 = Normal, 2 = MCI, 3 = AD), education in years, sex,

and APOE status (number of e4 risk alleles). SNP–SNP

interaction effects were explored using a genotypic model

and a linear regression framework for quantitative traits

(Herold et al. 2009). Interactions were considered signifi-

cant if their p value exceeded a moderate threshold of

a\ 5 9 10-6. A t test statistic and R2 effect size for each

significant SNP–SNP interaction were calculated in SPSS

(http://www-01.ibm.com/software/analytics/spss/) using the

same covariate, phenotype, and genotype files as used in

InterSNP. Significant effects were plotted in SPSS as well.

SNP–SNP interaction analysis: Stage 1 validation

We used gene-based replication strategy in our subsequent

validation analyses (Neale and Sham 2004), such that only

gene–gene pairs represented in significant interactions from

discovery analyses were tested in the first validation set. To

further reduce multiple testing, within each gene, we

selected only independent SNPs using LD pruning imple-

mented in PLINK with an r2 threshold of 0.6

ðplink --indep-pairwise 50 5 0:6Þ, resulting in 31,068 total

SNP–SNP tests. Pairwise LD was calculated with SNAP

(SNP Annotation and Proxy Search, available at http://www.

broadinstitute.org/mpg/snap/) using data from the European

(CEU) population in 1000 Genomes Pilot 1. We used a

conservative Bonferroni correction for gene-level multiple

comparisons based on the number of SNP–SNP interactions

tested within each gene–gene pair. SPSS was used to calcu-

late the t test statistic and R2 effect size and to plot the effects.

SNP–SNP interaction analysis: Stage 2 validation

Further validation of the gene–gene interaction was con-

ducted in a post hoc analysis. We tested the SNPs that

passed correction in the discovery and Stage 1 validation

datasets that corresponded to the gene–gene interaction

validated in Stage 1. Interactions between the SNPs were

tested in SPSS using the identical model with the same

covariates as in the previous analyses with PiB SUVR

measure as the outcome variable. A conservative Bonfer-

roni correction for the four SNP–SNP interactions tested

was employed (p \ 0.0125). SPSS was used to calculate

the t test statistic and R2 effect size and to plot the effects of

these interactions as well.

Results

Discovery dataset

The model we tested included the major AD risk factors of

age, sex, education, diagnosis, and APOE status, such that

all significant interaction terms explained additional vari-

ance beyond these strong risk factors. Six SNP–SNP pairs

that mapped to four gene–gene interactions reached sig-

nificance at a\ 5 9 10-6: CACNA1C–ATF6 (2 SNP–SNP

interactions), NOS1–GNAQ (1 SNP–SNP interaction),

PLCB1–CACNA1C (2 SNP–SNP interactions), and RYR3–

CACNA1C (1 SNP–SNP interaction).

Stage 1 validation dataset

SNP–SNP pairs that mapped to the four gene–gene interac-

tions found in discovery were tested in the Stage 1 validation

data set [31,068 total independent tests: CACNA1C–ATF6

(1,010 tests), NOS1–GNAQ (364 tests), PLCB1–CACNA1C

(12,019 tests), and RYR3–CACNA1C (17,675 tests)]. One

SNP–SNP interaction mapping to RYR3–CACNA1C was

significant after Bonferroni correction (Table 2). The effect

of this interaction was in the same direction for both dis-

covery and Stage 1 validation (Table 2, bdiscovery = 0.42679

and bvalidation = 0.24924), and as seen in Fig. 1. In both the

discovery and Stage 1 validation interaction models, a minor
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allele in both genes corresponded to higher amyloid load

(Fig. 1) versus a minor allele in only one or none of the genes.

This interaction explained 9 and 4 % of the variance in

amyloid load in the discovery and Stage 1 validation data-

sets, respectively.

Stage 2 validation dataset

The four SNPs from the previously validated gene–gene

pair (RYR3–CACNA1C) were tested for interactions in the

Stage 2 validation dataset (four total independent tests).

None of these SNPs were in LD with each other (using a

threshold of r2 [ 0.6). One SNP–SNP interaction

(rs16972835-rs7132154) was significant after Bonferroni

correction (p = 0.0077, Table 2, Online resource 2). The

effect of this interaction was in the same direction as

the interactions found in the discovery and Stage 1 vali-

dation (Table 2, bdiscovery = 0.43, bStage1-validation = 0.25,

bStage2-validation = 0.45), and as seen in Fig. 1, in all three

datasets, a minor allele in both genes corresponded to

higher amyloid load (Fig. 1) versus a minor allele in only

one or none of the genes. This interaction explained 6 % of

the variance in amyloid load in the Stage 2 validation

dataset (Table 2).

Discussion

Calcium homeostasis and its relationship

to amyloidogenesis

In the present work, a genetic interaction between the

RYR3 and CACNA1C genes explained variance in amyloid

deposition above and beyond other major known risk fac-

tors for LOAD. Such an interaction is biologically feasible

given that the proteins encoded by CACNA1C and RYR3

interact to maintain calcium homeostasis necessary for

normal brain function (Ouardouz et al. 2003; Kim et al.

2007) and that many studies outlined below have shown a

relationship between calcium homeostasis and amyloido-

genesis, whereby increased intracellular calcium levels

lead to increased Ab deposition. An increase in Ab is

considered a key event in AD etiology (e.g., Jack et al.

2013), and calcium dysregulation is thought to assist in

amyloid formation and deposition and has been hypothe-

sized to be very important in the etiology of AD (Berridge

2010). Increases in intracellular calcium have been shown

to increase Ab production in human cell lines (Querfurth

and Selkoe 1994). High levels of intracellular calcium also

have been shown to induce transient phosphorylation of

amyloid precursor protein in neurons, leading to increased

production of Ab (Pierrot et al. 2006). Lastly, calcium ions

themselves have been shown to promote the formation of

neurotoxic Ab oligomers in vitro (Itkin et al. 2011). Our

findings are further strengthened by accumulating evidence

that RYR3 modulates Ab plaque deposition (Kelliher et al.

1999; Supnet et al. 2006; Oulès et al. 2012) and that

CACNA1C increases intracellular calcium levels in the

presence of Ab (Mattson et al. 1992; Ueda et al. 1997;

Scragg et al. 2005).

This interaction could have an important clinical appli-

cation, since both proteins encoded by these two genes are

calcium channels that have FDA-approved channel block-

ing drugs and blocking either channel has been proposed as

a therapy for AD pathology (Fruen et al. 1997; Anekonda

et al. 2011). A combination of these therapies could be

investigated as an enhanced approach to AD treatment.

RYR3 and CACNA1C

RYR3 encodes ryanodine receptor (RyR)-3, which is a

receptor expressed in the brain (Giannini 1995) located on

the endoplasmic reticulum (ER) that regulates intracellular

calcium homeostasis (Berridge 2010). CACNA1C encodes

Table 2 Significant SNP–SNP interactions in RYR3–CACNA1C from discovery and validation analyses

N Gene SNP MAF Main effect Interaction term

b p* b R2a p*

Discovery 163 RYR3 rs16972835 0.09 -0.12 0.04 0.43 0.09 2.49E - 06

CACNA1C rs2302729 0.17 -0.06 0.14

Stage 1 validation 373 RYR3 rs12901404 0.14 -0.06 0.05 0.25 0.04 2.22E - 06

CACNA1C rs7132154 0.21 -0.08 0.003

Stage 2 validation 95 RYR3 rs16972835 0.12 -0.13 0.21 0.45 0.06 7.70E - 03

CACNA1C rs7132154 0.25 -0.18 0.02

MAF Minor allele frequency for each SNP, b beta coefficient in linear regression model for SNP (in main effect), or SNP–SNP interaction (in

interaction term) representing effect on amyloid deposition

* p nominal p value of interaction term
a R2: R2 (full model) - R2 (model without interaction included)
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the pore-forming alpha 1C subunit of voltage-dependent

L-type calcium channels (LTCCs) which are also expres-

sed in the brain (Perez-Reyes et al. 1990). The major

characteristics of this channel, including voltage sensitiv-

ity, ion selectivity, and pharmacological responsivity to

calcium channel blockers, are encoded by CACNA1C (Bhat

et al. 2012). This subunit forms a pore in the cell membrane

through which calcium ions flow into the cell (Bhat et al.

2012).

RYR3 in AD pathogenesis

In animal models of AD, the relationship between RyR and

Ab has been extensively explored. Transgenic mice which

overexpress the precursor of Ab (APP, encoding amyloid

precursor protein (APP)) have increased RyR expression in

their neuroblastoma cell lines (Oulès et al. 2012). Specifi-

cally, extracellular amyloid has been shown to selectively

increase RyR-3 (but not RyR-1 or -2) isoform expression in

cortical neurons of both wild type and AD-model mice

(Supnet et al. 2006). Transgenic mice which harbor human

APP mutations have increased RyR expression in isolated

cortical neurons, and this overexpression of RyR disrupts

calcium homeostasis by increasing ER calcium release

(Oulès et al. 2012). Furthermore, this relationship between

RyR and Ab has been shown to be bi-directional, such that

RyRs can also affect Ab levels. Dantrolene is a pharma-

cological agent that blocks calcium release from RyR-1

and RyR-3 and has been used in cell and animal models to

diminish cell death resulting from neuronal injury (Fruen

Fig. 1 The effect of genetic interactions between RYR3 and CAC-

NA1C on amyloid deposition. In all three datasets, a minor allele in

both genes corresponded to higher amyloid load versus a minor allele

in only one or none of the genes. Bars represent one standard error.

a Effect of RYR3 (rs16972835) and CACNA1C (rs2302729) on

amyloid deposition (measured by AV-45 ligand) in discovery dataset.

b Effect of RYR3 (rs12901404) and CACNA1C (rs7132154) on

amyloid deposition (measured by AV-45 ligand) in Stage 1 validation

dataset. c Effect of RYR3 (rs16972835) and CACNA1C (rs7132154)

on amyloid deposition (measured by PiB ligand) in Stage 2 validation

dataset
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et al. 1997). Interestingly, when it was used to block RyR

and decrease calcium release in mouse models which either

overexpressed APP or had an APP mutation, this decrease

in calcium level was shown to reduce levels of intracellular

and extracellular Ab, as well as the number of Ab plaques

(Oulès et al. 2012). Thus, RyR-induced calcium levels

seem to influence Ab levels. This has also been shown in

human cell lines: in human neuroglioma and embryonic

cell lines transfected with APP, Ab production increased as

levels of intracellular calcium increased and RyR-mediated

calcium release increased (Querfurth and Selkoe 1994;

Buxbaum et al. 1994). In summary, the existing literature

indicates that there is a bi-directional relationship between

RyR and Ab, such that increased Ab has been associated

with increased RyR expression, and RyR-driven calcium

release has been associated with increased Ab levels.

CACNA1C in AD pathogenesis

CACNA1C encodes the pore-forming subunit of voltage-

dependent LTCCs. Its role in AD etiology can be better

understood through its relationship with Ab and its effects

on calcium dysregulation. In rat cortical cell lines, the

presence of Ab increased calcium uptake by LTCCs by

almost twofold (Ueda et al. 1997). In human cerebral

cortical cell lines, Ab destabilized neuronal calcium regu-

lation and rendered neurons more vulnerable to environ-

mental stimuli that elevate intracellular calcium levels

(Mattson et al. 1992). Up-regulation of the expression of

CACNA1C was observed in human neuroblastoma cell

lines after treatment with Ab (Anekonda et al. 2011), and

Ab promotes the insertion of the subunit encoded by

CACNA1C into the plasma membrane (Scragg et al. 2005).

In summary, Ab modulates LTCC function to increase

intracellular calcium and as described above in ‘‘Calcium

homeostasis and its relationship to amyloidogenesis’’, this

increase in intracellular calcium can further increase Ab
production and deposition.

RYR3–CACNA1C interaction and amyloid load

Both of the products of RYR3 and CACNA1C have been

shown to have a relationship with cellular Ab. These

products have also been shown to physically interact with

each other: in a study of cerebellar granule cells, RyRs and

LTCCs have been shown to be functionally coupled, with

RyRs controlling the activity of LTCCs (Chavis et al.

1996). In a separate study in in vitro rat neuronal cell lines,

immunoprecipitation revealed an association between

LTCCs and RyRs, and immunohistochemistry confirmed

the co-localization of LTCC and RyR clusters on axons

(Ouardouz et al. 2003). In that same study, depolarization

sensed by LTCCs activated RyRs, which caused the release

of toxic levels of calcium (Ouardouz et al. 2003). This

interaction was also demonstrated in a study of rat hippo-

campal tissue, where a physical interaction between the

N-terminus of the LTCC and the N-terminus of a RyR was

observed (Kim et al. 2007). Finally, an interaction between

RyRs and LTCCs has been observed in cardiac and skeletal

muscle, where these proteins are also expressed (Cannell

and Soeller 1997; Squecco et al. 2004).

With the evidence of physical interaction between the

RyR and LTCC proteins and the evidence outlined above

relating RyR, LTCC, calcium release, and Ab to each

other, the statistical genetic interaction we report herein

might be reflective of causal variants in RYR3 and CAC-

NA1C interacting to cause disruption of calcium homeo-

stasis and to increase intracellular calcium levels leading to

increased Ab production and deposition as detected by

PET.

Caveats

Fine-mapping and functional analysis of the SNPs iden-

tified could help clarify the implications of these statis-

tical genetic interactions and provide greater specificity

when attempting to leverage these results to identify

targets for clinical intervention. Because we validated our

results at the gene–gene level and not the SNP–SNP

level, further delving into the function of each of these

SNPs or the causal variant these SNPs are tagging would

be necessary to understand whether the discovery and

validation models represent the same effect. For example,

if each SNP increases the expression of its respective

gene, we could conclude that the effect was truly repli-

cated and that increased expression of both genes is

associated with increased amyloid load (regardless of

which SNP caused the overexpression). In summary, the

effect that each SNP has on expression level or function

would have to be explored to determine true replication

of the effect.

The exact SNP–SNP interactions do not replicate across

the samples, but we would argue (as others have) this lack

of replication does not necessarily indicate a false positive

result and may instead be due to one or several biological

reasons (Neale and Sham 2004), including allelic hetero-

geneity (wherein different alleles at the same locus are

each responsible for increased disease risk in different

subjects), differences in minor allele frequency, or differ-

ences in LD structure across samples. The power to repli-

cate at the SNP level drops dramatically with a change in

allele frequency between datasets (Greene et al. 2009).

Differences in LD structure across the two samples

between each tag SNP and the causal variant could cause

the same high-risk allele to have different patterns of

association with the marker alleles (Neale and Sham 2004).
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The gene-based replication approach we employed here

attenuates these issues and has been proposed as the ‘‘gold

standard’’ for replication and the ‘‘natural end point for

association analysis’’ (Neale and Sham 2004). This is

perhaps especially important in gene–gene interaction

studies where these issues are amplified.

The present results must be interpreted within the

framework of our statistical models. In all cases, we

included covariates related to disease status and progres-

sion, including age, education, diagnosis, sex, and APOE

status. Thus, all significant interactions explained variance

beyond known predictors of risk, and while the contribu-

tions of these interactions appear to be meaningful, the

implications should not be extended without considering

the variance accounted for by the other factors in our

model. The interactions in this study represent dominant

effects (carriers versus non-carriers), and the results have

been interpreted accordingly. We did not test mitochon-

drial genes in this study. This could be explored in a further

analysis.

Conclusion

In this study, we have explored the relationship between

genes within the AD pathway and their relationships to Ab
plaque levels in humans. We found evidence for a statis-

tical association between calcium dysregulation and Ab
deposition as detected by PET amyloid imaging. In light of

prior studies associating the products of RYR3 and CAC-

NA1C with each other and with AD pathology, this result is

certainly biologically plausible. This interaction is of par-

ticular clinical significance because pharmacological

manipulation of the two channels involved is feasible for

future AD treatment. Combined therapy, using LTCC and

RyR blockers, could first be tested in cell lines and animal

models to determine its effect on Ab plaque load and

neuronal cell death.
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